Frontiers in Energetic Particle Research in Fusion (solved and unsolved EP problems)

N.N. Gorelenkov, PPPL, Princeton University

Chirping AE modes in DIII-D (& NSTX-U etc.) can be **predicted** now by NOVA-K

(V. Duarte et al., Nuclear Fusion letter'17)

1st AAPPS, Chengdu, China, Sept. 2017

Several priority topics are of major importance for burning plasmas

- With fast ions (EP) required for burning self heated plasmas, <u>Alfvénic eigenmode</u> (AE) instabilities are hard to avoid
 - Low-f (*AEs) to subcyclotron frequency modes are expected to be unstable in ITER (Gorelenkov, Pinches, Toi, NF'14)
- Deleterious effects on <u>plasma confinement</u> due to EPs (IAEA TCM'17, Princeton)
- On Cyclotron Emission (ICE) could be important diagnostic tool for burning plasmas (BP, IAEA TCM'17, Princeton)

- can lead to significant losses up to 40% of EP ions in present day (PD) machines
- with linear AE theory mostly complete nonlinear studies should be in focus
- need to be understood for better planning of expensive reactor-size machines
- very attractive for BPs
- poorly understood for diagnostics

Several priority topics are of major importance for burning plasmas

- With fast ions (EP) required for burning self heated plasmas, <u>Alfvénic eigenmode</u> (AE) instabilities are hard to avoid
 - Low-f (*AEs) to subcyclotron frequency modes are expected to be unstable in ITER (Gorelenkov, Pinches, Toi, NF'14)
- Deleterious effects on <u>plasma confinement</u> due to EPs (IAEA TCM'17, Princeton)
- On Cyclotron Emission (ICE) could be important diagnostic tool for burning plasmas (BP, IAEA TCM'17, Princeton)

- can lead to significant losses up to 40% of EP ions in present day (PD) machines
- with linear AE theory mostly complete nonlinear studies should be in focus
- need to be understood for better planning of expensive reactor-size machines
- very attractive for BPs
- poorly understood for diagnostics

Several priority topics are of major importance for burning plasmas

- With fast ions (EP) required for burning self heated plasmas, <u>Alfvénic eigenmode</u> (AE) instabilities are hard to avoid
 - Low-f (*AEs) to subcyclotron frequency modes are expected to be unstable in ITER (Gorelenkov, Pinches, Toi, NF'14)
- Deleterious effects on <u>plasma confinement</u> due to EPs (IAEA TCM'17, Princeton)
- Ion Cyclotron Emission (ICE) could be important diagnostic tool for burning plasmas (BP, IAEA TCM'17, Princeton)

- can lead to significant losses up to 40% of EP ions in present day (PD) machines
- with linear AE theory mostly complete nonlinear studies should be in focus
- need to be understood for better planning of expensive reactor-size machines
- very attractive for BPs
- poorly understood for diagnostics

- BPs conditions can be explored in PD devices
- EP transport due to AE instabilities
 - Steady state and chirping regimes for AE induced transport
 - EP critical gradient regimes in DIII-D
 - Can we quantify chirping regimes: will/will not occur?
- 3 Deleterious high-f modes in STs (NSTX)
 - ullet believed to be responsible for T_e saturation during NBI heating
 - can lead to CAE/KAW coupling and power channeling
- 4 Ion Cyclotron Emission (ICE)
 - Case for EP diagnostics in BPs
- 5 Summary and Possible directions for EP research

Parametrization of EP studies relates PD to future BP devices

Three parameters can be chosen for EP-relevant studies characterization: $\mathbf{v_f}/\mathbf{v_A}$ EP to Alfven speed ratio. minor to Larmor radius ratio $\mathbf{a}/\rho_{\rm f}$, and betas ratio $\beta_{\rm f}/\beta_{\rm pl}$. $\mathbf{a}/\rho_{\rm f}\sim n$ (toroidal mode number) $\mathbf{v_f}/\mathbf{v_A}$: \sim the fraction of resonant ions $\beta_{\rm f}/\beta_{\rm pl}$: \sim available power for excitation

Accessible parameter space is sufficiently broad to overlap most present day fusion devices with future BPs (Gorelenkov, Pinches, Toi, NF'14).

Parametrization of EP studies relates PD to future BP devices

Three parameters can be chosen for EP-relevant studies characterization: $\mathbf{v_f}/\mathbf{v_A}$ EP to Alfven speed ratio. minor to Larmor radius ratio $\mathbf{a}/\rho_{\rm f}$, and betas ratio $\beta_{\rm f}/\beta_{\rm pl}$. $\mathbf{a}/\rho_{\rm f}\sim n$ (toroidal mode number) $\mathbf{v_f}/\mathbf{v_A}$: \sim the fraction of resonant ions $\beta_{\rm f}/\beta_{\rm pl}$: \sim available power for excitation

Accessible parameter space is sufficiently broad to overlap most present day fusion devices with future BPs (Gorelenkov, Pinches, Toi, NF'14).

NSTX(-U), US specific studies

US fusion program with NSTX-U and DIII-D shows example of parameter space overlaps

DIII-D is closest to BP

BP overlaps with NSTX(-U) the most W_f/W_{tot} : EP power $(\sim \beta_f)$ for the drive

These maps help to focus EP research and direct it towards BPs.

- BPs conditions can be explored in PD devices
- EP transport due to AE instabilities
 - Steady state and chirping regimes for AE induced transport
 - EP critical gradient regimes in DIII-D
 - Can we quantify chirping regimes: will/will not occur?
- Oeleterious high-f modes in STs (NSTX)
 - ullet believed to be responsible for T_e saturation during NBI heating
 - can lead to CAE/KAW coupling and power channeling
- 4 Ion Cyclotron Emission (ICE)
 - Case for EP diagnostics in BPs
- 5 Summary and Possible directions for EP research

STs & conventional tokamaks regimes complement each other for (V&V)

mostly steady state in conv. tokamaks (ASDEX Upgrade - AUG, Garcia-Munoz'11)

- Both steady-state (AUG, DIII-D) and chirping frequency (NSTX, MAST) regimes are required for BPs
 - \bullet Both regimes can have up to $\sim 40\%$ loss of fast ions in PD experiments
- 2 Initial value codes and reduced models are to be validated in both regimes
- Developing reduced models: <u>steady state</u> regimes ready; <u>chirping</u> regimes is not clear how to proceed.

- BPs conditions can be explored in PD devices
- EP transport due to AE instabilities
 - Steady state and chirping regimes for AE induced transport
 - EP critical gradient regimes in DIII-D
 - Can we quantify chirping regimes: will/will not occur?
- Obligation
 3 Deleterious high-f modes in STs (NSTX)
 - \bullet believed to be responsible for T_e saturation during NBI heating
 - can lead to CAE/KAW coupling and power channeling
- 4 Ion Cyclotron Emission (ICE)
 - Case for EP diagnostics in BPs
- 5 Summary and Possible directions for EP research

Recent FIDA challenged reduced models in detailed comparisons

- Detailed analysis using Fast Ion D_{α} (FIDA) signal reveals inversed radial profile due to AEs (Collins et al. PRL'16, Heidbrink et al. PoP'17)
- Initial value MEGA simulates similar DIII-D cases well, requiring ~1 month to run! (Todo et al, NF'16).

Earlier developed perturbative Critical Gradient Model (reduced Quasi-Linear) does not reproduce hollow EP profiles, and underestimates the neutron deficit by the factor of 2.

Need velocity space resolution such as in shown Kick Model (Podesta et al., PPCF'14) \Rightarrow to be addressed by Resonance Broadened QL (true QL model, Berk et al., PoP'96; Gorelenkov, IAEA'17).

Initial RBQ application in predictive mode

Broadening is defined by RSAE amplitude $\delta B_{\theta}/B = 7 \times 10^{-3}$, f = 84 kHz, Collins, PRL'16.

The choice of this RSAE is critical to understand the EP transport leading to hollow EP pressure profiles in DIII-D.

Nominal predicted amplitudes times $0.85\delta B_{\theta}/B$ give good agreement with neutron deficit.

◆ロト ◆部ト ◆差ト ◆差ト 差 めので

- BPs conditions can be explored in PD devices
- EP transport due to AE instabilities
 - Steady state and chirping regimes for AE induced transport
 - EP critical gradient regimes in DIII-D
 - Can we quantify chirping regimes: will/will not occur?
- Obligation
 3 Deleterious high-f modes in STs (NSTX)
 - \bullet believed to be responsible for T_e saturation during NBI heating
 - can lead to CAE/KAW coupling and power channeling
- 4 Ion Cyclotron Emission (ICE)
 - Case for EP diagnostics in BPs
- Summary and Possible directions for EP research

Building RBQ code requires the identification of these regimes

PPPL/IFS/SPU collaboration:

(V.Duarte et al. NF'17 letter, TTF'17, IAEA'17 invited talks)

a correlation emerged between the turbulence driven pitch \rightarrow angle scattering and AE frequency chirping in DIII-D, TFTR, NSTX

New criterion for chirping modes is implemented in NOVA-K

$$\sim (\boldsymbol{E}_{TAE} \cdot \boldsymbol{v}_{dr}) v_{drag}^{-4} : \rightarrow$$

- i) > 0 then fixed frequency wave is likely;
- ii) < 0 chirping wave is likely;

The criterion is able to quantitatively explain observations if turbulent diffusion boosts pitch-angle scattering from collisional level.

Chirping criterion is available in NOVA-K and needed for (RBQ) applications.

Other potential problems for EP transport in BP relevant regimes

Gorelenkov, Pinches, Toi, NF'14

- BPs conditions can be explored in PD devices
- 2 EP transport due to AE instabilities
 - Steady state and chirping regimes for AE induced transport
 - EP critical gradient regimes in DIII-D
 - Can we quantify chirping regimes: will/will not occur?
- 3 Deleterious high-f modes in STs (NSTX)
 - ullet believed to be responsible for T_e saturation during NBI heating
 - can lead to CAE/KAW coupling and power channeling
- 4 Ion Cyclotron Emission (ICE)
 - Case for EP diagnostics in BPs
- 5 Summary and Possible directions for EP research

High-f modes on NSTX 0.5 - 1.1MHz

- T_e profiles are flattened with increased beam power
- attributed to enhanced e-transport
 - test particle ORBIT simulations using multiple GAEs explained possible temperature rollover (Gorelenkov, NF'10)
 - there is still no model in TRANSP to address this
 - power channeling is proposed (Kolesnichenko etal., PRL10 and Belova, PRL'15)

Do we understand T_e flattening in STs (NSTX) TRANSP often underpredicts e-heating.

- BPs conditions can be explored in PD devices
- 2 EP transport due to AE instabilities
 - Steady state and chirping regimes for AE induced transport
 - EP critical gradient regimes in DIII-D
 - Can we quantify chirping regimes: will/will not occur?
- 3 Deleterious high-f modes in STs (NSTX)
 - ullet believed to be responsible for T_e saturation during NBI heating
 - can lead to CAE/KAW coupling and power channeling
- 4 Ion Cyclotron Emission (ICE)
 - Case for EP diagnostics in BPs
- 5 Summary and Possible directions for EP research

Power channeling can provide an explanation to reduced core plasma heating in NSTX

HYbrid MHD (HYM) demonstrates CAE to Kinetic Alfvén Waves (KAW) channeling for dissipation

Global & localized structures

Umov-Poynting vector indicates energy dissipation

- (Belova et al., PRL'15)
- Energy flux is directed away the center towards KAW (edge) (Chen, Hasegawa PRL'73,'74, Johnson, Cheng GRL'97).
- This mechanism is important for ICE, anomalous thermal ion heating (see below)

 $\label{eq:GAE} \mbox{GAE/CAE} \ \mbox{driven effective e-transport could be a serious problem in STs.}$

Other toroidal plasma devices.

- BPs conditions can be explored in PD devices
- EP transport due to AE instabilities
 - Steady state and chirping regimes for AE induced transport
 - EP critical gradient regimes in DIII-D
 - Can we quantify chirping regimes: will/will not occur?
- Obligation
 Deleterious high-f modes in STs (NSTX)
 - ullet believed to be responsible for T_e saturation during NBI heating
 - can lead to CAE/KAW coupling and power channeling
- 4 Ion Cyclotron Emission (ICE)
 - Case for EP diagnostics in BPs
- 5 Summary and Possible directions for EP research

Complex ICE phenomenon promises important EP insights

Cottrell, NF'93

- ICE signal power is proportional to neutron source rate over 6 orders of magnitude
 - Ohmic to DD NBI to DT
 - It was not reproduced in other tokamaks (why?)
- Potential diagnostics is accessible in BP
- Linear physics is well understood (Gorelenkov, New J. Phys. '16)
- Nonlinear physics is being approached (Carbajal et al., PRL.'17)

Existing measurements point at ICE potential

- off-axis fishbones affect ICE
- ⇒ EP (drive source) redistribution to the edge (ICE location)
 - Lower Band Figure: ICE signals: deuterium cyclotron frequency at the plasma edge
 - Higher Band ICE: 2nd and 3rd harmonics.
- ⇒ better theory is needed for a proper interpretation measured
- ICE spectrum dependencies on plasma (&EP parameters) are complex (Thome et al., IAEA TCM'17)
- Some brakethrough is needed?

Potential directions

- AE transport of fast ions
 - Nonlinear regimes should be in focus both theoretically and experimentally
 - Initial value codes and reduced models are to be pursued
- Deleterious effects on EP and thermal plasma confinement
 - ST electron transport
 - Other effect could be non-deleterious: ion stochastic heating etc.
- ICE is important, partially (linearly) understood
 - Can we use it? in BPs? Phase-space engineering?